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Abstract
Motivation: Missing values are prevalent in high-throughput measurements due to various experimental or analytical reasons. Imputation, the 
process of replacing missing values in a dataset with estimated values, plays an important role in multivariate and machine learning analyses. 
The three missingness patterns, including missing completely at random, missing at random, and missing not at random, describe unique de
pendencies between the missing and observed data. The optimal imputation method for each dataset depends on the type of data, the cause 
of the missingness, and the nature of relationships between the missing and observed data. The challenge is to identify the optimal imputation 
solution for a given dataset.
Results: ImpLiMet: is a user-friendly web-platform that enables users to impute missing data using eight different methods. For a given data
set, ImpLiMet suggests the optimal imputation solution through a grid search-based investigation of the error rate for imputation across three 
missingness data simulations. The effect of imputation can be visually assessed by histogram, kurtosis, and skewness, as well as principal com
ponent analysis comparing the impact of the chosen imputation method on the distribution and overall behavior of the data.
Availability and implementation: ImpLiMet is freely available at https://complimet.ca/shiny/implimet/ and https://github.com/compli 
met/ImpLiMet.

1 Introduction
Missing data are a major problem for multivariate, machine 
learning (ML) and network analyses. For example, in large 
lipidomic or metabolic datasets, measurements for some ana
lytes may not be available in every sample due to routine 
technical variability, low abundance, ion suppression from 
co-eluting analytes, inaccurate feature assignment in annota
tion pipelines, or because analytes are simply not present in a 
subset of samples. This “missingness” confounds ML 
approaches, limits the number of methodologies that can be 
utilized, and reduces the statistical power of models that 

exclude samples with missing values. Sample exclusion fur
ther alters cohort representation, notably when 
“missingness” is an indicator of a particular subgroup, bias
ing results toward the groups in which all analytes are ob
served, and potentially leading to inaccurate interpretations 
(J€ager et al. 2021).

Imputing missing values is commonly employed when per
forming multivariate and ML analyses to help reduce data 
bias resulting from sample exclusion. Three types of missing
ness have been conceptualized that can be addressed by impu
tation (Mack et al. 2018, Scheffer 2002):
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1) Missing completely at random (MCAR) refers to values 
whose absence is completely independent of any other 
data feature or covariate. In this type of missingness, 
each sample has the same probability of presenting an 
MCAR value because there is no underlying difference 
between the samples with or without missing data 
(Rubin 1976, Mack et al. 2018). A real-world example 
of MCAR is transient (aka random) technological fail
ure over the course of data collection such that there is 
no relationship between the samples with missing or ob
served values. 

2) Missing at random (MAR) refers to missing values 
whose absence is related to the values of other measured 
features but not to the measured values of the same fea
ture (Schafer 1997). Here, missing values do not depend 
on the variable in question but on the values of the other 
analytes present in each sample. An example of MAR 
would be when the value for one analyte is missing be
cause its measurement is obscured by the abundance of 
another analyte in the same sample (e.g. ion suppression 
of co-eluting analytes in the case of lipidomic or metabo
lomic datasets). 

3) Missing not at random (MNAR) refers to missing values 
that are absent because a feature, condition, or covariate 
is directly responsible for the absence in that sample. 
Here, the probability of missingness depends on the 
sample itself. A biological example of this group would 
be analytes that are not synthesized, and thus not pre
sent, in every condition. A technological example would 
be when analytes are present in a given sample but are 
below the limit of quantification of the technology used 
to measure the data. 

Multiple imputation methods have been introduced to ap
proximate missing values. Recently, J€ager et al. (2021), and 
Chilimoniuk et al. (2024), have compared and evaluated dif
ferent approaches with respect to the quality of the imputed 
data and their downstream impact on ML pipelines. They 
presented a method for testing imputation quality based on 
the error rate and downstream use of data and in their work 
show that in almost all assessed examples, Random Forest 
(RF) provides the optimal result. To ensure agnostic dataset 
evaluation, Lin et al. (2024) have recently presented a plat
form for imputation of mass spectrometry omics data that 
provides users with the information about the hypothetical 
source of missingness through correlation analysis—testing 
possibility for MAR and statistical analysis—and exploring 
the possibly for missing through MNAR mechanisms. Users 
can then provide the ratio of missingness types present in 
their datasets that will influence the selection of the imputa
tion method; however, the same imputation method is used 
for all variables. A remaining bioinformatic challenge is the 
identification of the optimal imputation solution for a given 
dataset of any type. As missingness can come from different 
sources for variables within the dataset, different imputation 
methods might be necessary for groups of features within 
the dataset.

To address this challenge, we present Imputation for 
Lipidomics and Metabolomics—ImpLiMet—applicable to 
any numerical dataset, validated here for using lipidomic and 
metabolomic data. ImpLiMet is an R package available at 
https://github.com/complimet/ImpLiMet and online through 
a web interface at Computational Lipidomics and 

Metabolomics: CompLiMet: https://complimet.ca/shiny/impli 
met/. ImpLiMet enables users to impute missing data using 
eight different methods across the whole dataset or within 
user-defined groups of features. The effect of each method 
can be visualized by histogram, kurtosis, and skewness analy
ses, as well as principal component analysis (PCA) comparing 
the impact of simply removing features and samples with 
missing data to the chosen imputation method. To identify 
the optimal imputation solution, ImpLiMet further offers an 
optimization option wherein the error of each imputation 
method is evaluated, and the user is informed of the method 
with the lowest mean absolute percentage error (MAPE) 
across three “missingness” simulations for their dataset.

2 Methods
ImpLiMet is written in R and deployed as a RShiny applica
tion. Figure 1 presents the ImpLiMet workflow and pseudo
code for the optimization procedure. ImpLiMet accepts a . 
CSV file as input. If the dataset includes features measured in 
different units by different platforms (multiple feature mea
surement groups) or features possibly having different levels 
of relationships to other features, the user has the option to 
format their data such that the imputation methods consider 
feature groups separately. An example of different measure
ment groups could be the combination of lipidomic and 
metabolomic data measured using different platforms or mul
tiomics data such as metabolomic and transcriptomic data 
contained in a single dataset. The user can specify the number 
of features or samples with the selected percentage(s) % of 
missing values to be removed prior to choosing an imputation 
measure or optimizing across measures. Eight imputation 
methods are available: (1) replacing with the feature mini
mum, (2) replacing with the feature minimum divided by 5, 
(3) replacing with the feature maximum, (4) replacing with 
the feature median, (5) replacing with the feature mean, (6) 
using K-Nearest Neighbors (kNN) (Hastie et al. 2000, 
Troyanskaya et al. 2001), (7) using RF (Pantanowitz and 
Marwala 2009), or (8) using Multivariate Imputation by 
Chained Equations (MICE) (van Buuren and Groothuis- 
Oudshoorn 2011). For kNN, RF, and MICE, users can spec
ify the number of neighbors for kNN, the number of trees for 
RF, and the number of iterations for MICE. kNN is imple
mented using impute. KNN function; RF imputation utilizes 
missRanger.RF function (Stekhoven and Buehlman 2011) 
and MICE using the function mice (van Buuren and 
Groothuis-Oudshoorn 2011).

If the user’s dataset has at least 3 features and 6 samples 
with no missing values, or a minimum of 18 non-missing val
ues across minimum of 3 features and 6 samples, ImpLiMet 
further offers an optimization option wherein the error of 
each imputation method is evaluated by simulating the three 
different sources of missingness in the user’s dataset once all 
missing data is removed then testing all available imputation 
methods. Optimization suggests the best imputation method 
as the one with the lowest MAPE across the three 
“missingness” data simulations, i.e. the lowest value for all 
tested values. The selected approach is used to impute the 
original dataset and this result is provided as a download. 
Alternatively, the user can choose to utilize another imputa
tion method based on, for example, simulation results, the vi
sualization analysis provided by ImpLiMet, or prior 
information about the sources of missingness in the dataset. 
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In the case of different types of missingness in the dataset, the 
user can group features by missingness type, perform imputa
tion using the proposed optimal methods for each group and 
subsequently combining the results for different groups using 
the downloaded data.

In the optimization step, samples without any missing val
ues are selected to create a complete set. If the cleaned dataset 
obtained by removing all samples (rows) with missing values 
has no remaining values, optimization will instead select fea
tures (columns) without missing values. Finally, if both 
approaches result in the removal of all columns and rows, 
ImpLiMet will select columns and features with <80% miss
ing values and returns to selecting samples with no missing 
values with the remaining set. If not found, ImpLiMet will se
lect features with no missing values. In this way, the algo
rithm ensures that the analysis of the optimal imputation 
method for the dataset can be evaluated by imputing only the 
missing data from the set that is removed for testing in the 
optimization step. Note, if there are less than at least 18 val
ues, in 6 samples and 3 features remaining, optimization of 
imputation cannot be done. It is important to keep in mind 
that in extremely small datasets imputation will be biased by 
available information. From the dataset devoid of missing 
features, ImpLiMet removes data values at the sample thresh
old percentage initially provided by the user for filtering. If 
threshold percentage is not provided, i.e. user opts not to re
move any additional features or samples from their dataset 
prior to imputation, ImpLiMet uses 30% as the threshold 
percentage in the optimization process. The threshold per
centage is used to simulate the optimal imputation method 

for a given dataset at the level of the user’s specified tolerance 
for imputation. For extremely small dataset sizes (e.g. a 6 × 3 
matrix), only a 10% threshold for full optimization will en
able simulation as all other thresholds will result in an insuffi
cient sample size for imputation method testing and error 
calculation. The known values removed for simulation are 
kept as the hold-out set and are used to evaluate error of im
putation as follows:

Given dataset: X¼ xijf g; i¼ 1 . . . ; Ns; j¼ 1 . . . ; Nf where 
Ns is the number of samples and Nf is the number of features; 
with missing elements xkm; ðk;mÞ 2M the goal of imputation 
is to determine values for the missing elements that resemble the 
complete data. As the first step in optimization, any row or col
umn with missing elements are removed leading to the sub
set X

0

¼ xij
0

� �
; i¼ 1 . . . ; N

0

s; xkm; ðk;mÞ; j¼ 1 . . . ; Nf .
From this subset data, removal is performed separately to 

simulate MAR, MCAR, and MNAR mechanisms. 
Pseudocode for each missingness mechanism is provided 
in Fig. 1B.

For MCAR, a filtering matrix of dimension N0s × N0f is 
created by random sampling from a uniform distribution 
(minimum¼0 and maximum¼1) generated from the func
tion runif in R. Random values in the matrix are ranked and 
values below the imputation threshold are set to NA for miss
ing and above are set to one for remaining. The element-wise 
product between this filtering matrix and full data matrix 
provides the MCAR example set for further testing.

For MNAR, the missing value assignment is performed in
dividually for each feature as follows: (1) A list of values is 
generated by sampling from a logistic distribution 

Figure 1. (A) Schematic workflow of ImpLiMet. In the case of automated optimization, ImpLiMet first removes all columns in the dataset with missing 
values then simulates missing elements following three types of missingness: MCAR, MAR, and MNAR. Missing values are imputed with all methods 
and the error of imputation is determined using MAPE. Imputation is then performed on the original dataset using the method with the lowest MAPE 
value. The dataset with imputed values is returned to the user and the effect of imputation on the dataset is visualized with statistical measures and PCA. 
(B) Schematic pseudocode of the process of data removal for the three different missingness types during optimization. Matrix multiplication indicates 
the element-wise product. Detailed pseudocode is provided in the Supplementary Materials. A comprehensive flowchart is presented at: https:// 
complimet.ca/shiny/implimet/.
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(location¼ 0, scale¼1), denoted L1 ¼ lð1Þi

n o

; i¼ 1 . . . ; N0s. 
(2) A second list is generated by sampling from the uniform 
distribution (minimum¼0 and maximum¼1), denoted 

L2 ¼ lð2Þi

n o

; i¼ 1 . . . ; N0s: (3) A third list is generated from 

the product of L3 ¼ L1 �L2, L3 ¼ lð3Þi ¼ lð1Þi lð2Þi

n o

. (4) The 
ranks for the values in L1, L3, as well as the feature measure
ments, are computed. (5) The highest and lowest ranks from 
L3, with the number of missing values dependent on the 
assigned threshold, are determined and the corresponding 
(feature-wise) ranks in L1 are assigned. Equivalent ranks in 
the dataset are removed as missing.

For MAR, a co-dependance group is created by summating 
all feature values in a sample except the values in the current 
cell. If the input file contains information about the feature 
groups, based on biological or analytical characteristics, the 
summation calculation is performed within each feature 
group for each sample for the co-dependence matrix. The 
MAR process follows MNAR steps 1 through 3. In step 4, 
the ranks for the values in L1, L3, and the sample values in 
the filtering matrix are computed. Missing indices are 
assigned to the highest and lowest ranks from L3, with the 
number of missing values dependent on the sample threshold. 
The order of the values in L1, which produces the missing in
dices in L3, are retrieved, and the corresponding order in the 
filtering matrix column for the co-dependent feature are 
assigned as NA.

After generating the three types of missing datasets, each 
dataset is imputed using each of the eight available methods. 
For multivariate methods, users are prompted to select a sim
ple or full version of parameter optimization. Simple parame
ter optimization uses the following default parameters: 
K-value¼10, Tree Value¼500, and Mice Iteration¼2. If a 
full parameter search is selected, the accuracy of the imputed 
values is tested over a range of hyperparameters for kNN, 
MICE and RF. Specifically, for kNN, the K-values tested 
range from 10 to 100 incremented by 20. For the optimal 
K-value in this range, a refined search is conducted from k − 
4 to kþ4 in single value increments to identify the K-value 
with the lowest error rate. For RF, the number of trees in the 
sequence of 5, 10, 20, 50, 100, 150, 200, 500 are examined 
to determine the optimal tree size. For MICE, 1–3 iterations 
are tested. The full optimization approach is generally pre
ferred, however due to the large number of calculations taken 
in this approach it can be time consuming (e.g. for dataset 
with 45 samples × 40 features—the example input set pro
vided—full optimization test takes �2 min online). Thus, for 
very large datasets, fast optimization analysis can provide ini
tial screen of methodologies. Error rates are calculated by 
mean absolute error rate (MAPE) defined as: 

MAPE ¼
100
N

XN

i¼1

xi � yij j

xi
; xi >0; (1) 

where N is the number of missing values, xi is the actual 
value, and yi is the prediction. The MAPE results for each of 
the eight imputation methods assessed for each missingness 
mechanism are displayed and the method with the lowest 
MAPE value across the missingness mechanisms is 
highlighted and used for imputation. In general, omics meas
urements are greater than zero as the minimal value measured 

corresponds to the minimal level of detection in the measure
ment, rather than absolute zero value.

The effect of imputation on the dataset is visualized by 
dataset histogram, kurtosis, and skewness characteristics as 
well as PCA comparing the original dataset, following re
moval of all samples and features with missing data, to that 
of the imputed dataset. Histograms show all values in the 
dataset following feature z-score scaling and compares the 
overall dataset distribution of cleaned dataset with the im
puted set. Kurtosis and skewness provide information about 
the distribution for each feature separately. Kurtosis is a mea
sure the level of tailing of the data. Skewness indicates the 
symmetry relative to the normal distribution. Symmetric data 
has a skewness of zero. High negative skewness indicates that 
data are left skewed (a long-left tail, thus data are missing 
more values in the high abundance range). Positive skewness 
indicates data are right-skewed, meaning that more low 
abundance data are missing altering the assumption of a nor
mal distribution. High skewness, calculated in ImpLiMet us
ing R function skewness, suggests the possibility of MNAR 
for those features. Kurtosis (calculated using R function kur
tosis), indicates potential increased levels of outliers in the 
dataset, with high values suggesting significant presence of 
outliers from normal distribution. In ImpLiMet, kurtosis and 
skewness are shown for both datasets with all samples and 
features with missing values removed and the complete, im
puted dataset, allowing the user to explore possibility for of 
MNAR in some of the features as well as to observe the effect 
of imputation on the normality of features distribution. PCA, 
for both samples, calculates principal components using fea
tures as variables, and displays features, using their values 
across samples as variables. The user-provided sample and 
feature names are shown in the plots for reference. An exam
ple of the optimization utilization as well as comparison of 
errors in imputation using recommended and other imputa
tion methods is presented in the Supplementary Materials.

Briefly, from the subset of metabolomics data published by 
Li et al. (2019) with complete data for 50 samples and 50 fea
tures, we have removed values from 120 cells and tested the 
error rate for the imputed values using different methods. 
Results show that the recommended method, in this case RF, 
provides imputation with the lowest error and the best agree
ment in PCA when comparing the original dataset with the 
original data (full information is provided in Supplementary 
Materials). We also provide an example of the utilization of 
ImpLiMet on a combined metabolomics and lipoprotein 
dataset (Oppong et al. 2024) with multiple groups and testing 
of the skewness analysis (Supplementary Materials).

3 Results
ImpLiMet is a versatile and web-based application designed 
to assist users in identifying the optimal imputation solution 
for their datasets. It identifies the optimal method based on 
the lowest error rate overall, while at the same time present
ing error rates of imputation for different types of missing
ness for all methods. ImpLiMet currently includes eight 
imputation methods as well as visual representation of statis
tical features of the dataset to help users interpret sources of 
missingness across features. Future development will include 
the addition of other imputation methods as well as an auto
mated analysis of the type of missingness present in the data.
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