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ABSTRACT: Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS)
methods are often used to identify protein−protein interactions (PPIs). While these
approaches are prone to false positive identifications through contamination and antibody
nonspecific binding, their results can be filtered using negative controls and computational
modeling. However, such filtering does not effectively detect false-positive interactions
when IP-MS/MS is performed on human plasma samples. Therein, proteins cannot be
overexpressed or inhibited, and existing modeling algorithms are not adapted for execution
without such controls. Hence, we introduce MAGPIE, a novel machine learning-based
approach for identifying PPIs in human plasma using IP-MS/MS, which leverages negative
controls that include antibodies targeting proteins not expected to be present in human
plasma. A set of negative controls used for false positive interaction modeling is first
constructed. MAGPIE then assesses the reliability of PPIs detected in IP-MS/MS
experiments using antibodies that target known plasma proteins. When applied to five IP-
MS/MS experiments as a proof of concept, our algorithm identified 68 PPIs with an FDR
of 20.77%. MAGPIE significantly outperformed a state-of-the-art PPI discovery tool and identified known and predicted PPIs. Our
approach provides an unprecedented ability to detect human plasma PPIs, which enables a better understanding of biological
processes in plasma.
KEYWORDS: proteomics, plasma, protein−protein Interactions, machine learning, mass spectrometry, supervised learning,
immunoprecipitation, affinity purification, antibody, artificial intelligence

■ INTRODUCTION
Characterizing protein−protein interactions can reveal much
about the function of proteins, the complexes in which they
form, and the biological processes in which they are involved.
To this end, groups have mapped large-scale protein−protein
interaction (PPI) networks in yeast (sp. Saccharomyces
cerevisiae).1−3 For example, both a protein kinase and
phosphatase interactome have been mapped.4 Similarly, the
PPI network in nematodes (sp. Caenorhabditis elegans) has also
been largely mapped.5 In humans, a proximity-dependent
interaction network, named Cell Map, has been made
available.6 Quantitative proteomics has also been used to
define the interactome network topology of HeLa cell lines,
proposing the importance of interaction stoichiometry for
creating complete networks.7,8 Finally, the BioPlex protein−
protein interaction network is one of the largest networks for
interactions characterized in humans, composed of 118,162
interactions from 14,586 at the time of publication.9,10

Nowadays, tandem mass spectrometry (MS/MS) is typically
coupled to different strategies for screening PPIs. Among these
strategies, we note immunoprecipitation (IP) coupled to

tandem mass spectrometry (IP-MS/MS).11 Therein, the
tandem affinity purification (TAP)12,13 and the FLAG tags14

are commonly used to isolate an affinity-tagged protein of
interest (often referred to as the bait) with its interactors
(preys). Further progress in the development of IP-MS/MS
systems has spawned proximity labeling methods, such as
BioID,15 for the identification of proximal proteins. Another
useful approach for detecting direct PPIs is cross-linking (XL)
coupled to MS/MS (XL-MS/MS).16,17 With this technique,
interacting proteins are covalently bound prior to enzymatic
digestion. The cross-linked peptides can then be enriched, and
the resulting data provides information not only about the
direct physical contact of the interacting proteins but also
insights into the structural biology of these interaction pairs.18
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The choice of purification system influences experimental
design and these methods can be further optimized to target
historically difficult proteins to characterize, such as trans-
membrane proteins.19

Both the immunoprecipitation strategy and mass spectrom-
etry portions of IP-MS/MS generate false-positive protein−
protein interaction identifications, which can be filtered by
computational approaches. False positives arising from MS/
MS peptide identifications are typically controlled using a
target-decoy database search that estimates an identification
false discovery rate (FDR).20 Much like any mass spectrometry
experiments, IP experiments are susceptible to contamination
by exogenous proteins artifactually introduced to samples, such
as keratins, bovine serum albumin, Protein A, which includes
the IgG binding domain of the TAP tag, or the tryptic enzymes
themselves used for digestion during MS/MS sample
preparation.21 These contaminating proteins are well-charac-
terized in public repositories, such as the contaminant
repository for affinity purification-mass spectrometry data
(CRAPome),22 and thus can be easily excluded from IP-MS/
MS results. A more confounding source of false-positive
identifications stems from antibody nonspecific binding of
proteins to the antibody of the IP system or the molecular tag
expressed by the protein of interest. This issue becomes more
prominent as the biological matrix becomes more complex.
While these nonspecific protein bindings are often correct
mass spectrometry identifications, they are unlikely to be
biologically relevant interactors of the protein of interest.
These false positive PPIs have been shown to be effectively
filtered out by combining the use of experimental negative
controls and computational modeling.23−26 Examples of
negative controls for an IP experiment would be to perform
the antibody purification in a system not expressing the affinity
tag, expressing the affinity tag alone without bait, or expressing
a protein foreign to (or irrelevant to) the organism fused with
the affinity tag.27 It is assumed that proteins purified in these
negative controls are examples of antibody nonspecific binding.
To filter nonspecific binding, computational approaches for

IP-MS generally assess the confidence of a putative PPI, such
that it is deemed to be a bona fide interactor if its prey is
present at a significantly higher level than in negative controls.
This logic therefore emphasizes the importance of choosing
negative controls that are highly unlikely to result in the
purification of bona fide interactions and that are only
composed of nonspecific bindings. Many of these approaches
use label-free quantification MS/MS data to assign a
confidence score to a successfully purified protein−protein
interaction,28 either using precursor ion intensity or spectral
count as quantification measures. Among the prominent
algorithms to identify bona fide protein−protein interactions
from MS/MS data, we note the Significance Analysis of
INTeractome (SAINT) algorithm.29 SAINT uses a mixture
model and either precursor intensity or spectral count to
estimate the posterior probability that a putative interactor is
true and uses these probabilities to estimate an FDR for the
unique identifications. The computation of posterior proba-
bilities for putative bait−prey pairs and the implementation of
Bayesian inference to identify bona fide interactions have been
used in multiple algorithms.30 Decontaminator uses Mascot
database search engine scores31 to assess the confidence of
putative bait−prey pairs.32 CompPASS33 considers Z-scores of
spectral count data and novel D-scores to assess the
uniqueness of a putative interactor for a given bait and its

reproducibility across biological replicates. Finally, the Master-
Map system takes advantage of changes in precursor peptide
intensity across sequentially diluted samples containing a given
protein of interest.34 PPI confidence can be also evaluated
through the use of network topology.35 The latter approaches
stipulate that a given interaction pair can be supported by
other biologically relevant interactions in a given organism.
Despite these advances, assessing PPI confidence in human

plasma remains challenging. Many systemic molecular path-
ways observed in circulating PPIs remain uncharacterized due
to a lack of the necessary experimental and computational
approaches for reliable PPI identifications. For instance,
proprotein convertase subtilisin/kexin type 9 serine protease
(PCSK9) is present at varying levels in human plasma and
plays an important role in hypercholesterolemia and various
other cardiovascular disease phenotypes.36,37 One major
challenge is the modeling of background contamination in
human plasma. Since affinity tagging of bait proteins with
techniques such as TAP or FLAG is impossible, the ability to
generate representative negative control experiments, as in
standard IP-MS/MS experiments, is minimal. While difficult,
attempts have nevertheless been made in the past decade to
confidently identify PPIs in human plasma. A 2019 study
attempted to assess the selectivity of antibodies for their target
by directly immunoprecipitating proteins with their respective
antibodies and systematically evaluating each antibody’s
enrichment for its target, by computing Z-scores of the label-
free quantification (LFQ) intensities of each purification.38

There, the authors considered an antibody to be enriched for
its target if the quantified protein obtained a Z-score ≥3. One
drawback of this approach is that such a Z-score threshold is
arbitrary. Besides this approach, current tools for filtering out
false-positive protein−protein interactions from IP-MS/MS
data are designed only for experiments whose negative controls
can be easily produced and cannot be readily applied in the
context of human plasma analysis.
To address this challenge, we present MAGPIE, a Machine

learning Assessment with loGistic regression of Protein−
protein IntEractions, to address the challenge of assessing PPI
confidence in human plasma. MAGPIE uses a novel two-phase
computational approach for discriminating between putative
PPIs and antibody nonspecific binding in human plasma. The
first phase identifies a set of experimental negative controls to
use for modeling contamination and antibody nonspecific
binding. These controls are identified from a set of antibody
purifications targeting proteins not expected, with high
confidence, to be present in human plasma. Proteins identified
with these antibodies are used to model human plasma
nonspecific binding abundance. The second phase is a
supervised machine learning algorithm that predicts whether
a putative PPI�detected in an antibody purification targeting
a protein expected to be present in human plasma�is
biologically relevant or the result of nonspecific binding. We
show here in a proof of concept that MAGPIE outperforms a
state-of-the-art PPI confidence assessment software package,
SAINT, and that it identifies biologically relevant PPIs
documented in protein−protein interaction repositories39

and predicted by AlphaFold 3.40
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■ EXPERIMENTAL METHODS

Chemicals and Reagents
Affinity pipettes fitted with porous microcolumns coupled to
streptavidin (Thermo Scientific, 991STR11) were coupled to
biotinylated antibodies (antibody IDs: Anti-FLAG-IgG, Anti-
HA-IgG, Anti-LC3B-IgG, Anti-METTL23-IgG, Anti-RPAP2-
IgG, Anti-SRB7-IgG Ab 1, Anti-SRB7-IgG Ab 2, Anti-CNDP1-
IgG Ab 1, Anti-KLK6-IgG, Anti-SNCA-IgG, Anti-PCSK9-IgG,
Anti-CNDP1-IgG Ab 2) using a Versette automatic liquid
handler (Thermo Fisher Scientific), as previously de-
scribed.36,41 Antibody information and sources are provided
in Table S1. Iodoacetamide, DTT, and glucagon were from
Sigma, sequencing grade modified trypsin was from Promega,
and HBS-EP buffer was from GE Healthcare. HPLC-grade
water, trifluoroacetic acid, and acetonitrile were purchased
from Fisher.
Protein Affinity Capture
Commercially acquired pooled human plasma samples from
100 individuals with different sexes, ages, and ethnicities
preserved in EDTA (250 μL) (Zenbio) were diluted with 175
μL of HBS-EP buffer and dispensed in 96-well robotic PCR
plates (Abgene). Protein affinity capture was automated by
using a Versette automatic liquid handler (Thermo Fisher
Scientific). The affinity pipettes coupled to antibodies were
mounted to the Versette’s head and were first equilibrated by
15 aspiration and dispensing cycles of 100 μL of HBS-EP
buffer. For affinity capture, 250 aspiration and dispensing
cycles of 250 μL of diluted samples or standards were
performed. This was followed by washes consisting of 10
aspiration and dispensing cycles of 150 μL of HBS-EP and 2 ×
10 aspiration and dispensing cycles of 150 μL of water from
their respective 96-well plates. Finally, enriched proteins were
eluted by 250 aspiration and dispensing cycles of 30 μL of an
elution buffer consisting of 33% acetonitrile and 0.4%
trifluoroacetic acid. Eluates were evaporated using a speed
vacuum centrifuge (Eppendorf) and stored at −20 °C until
digestion.
Sample Preparation for LC-MS/MS
Samples were reconstituted in 45 μL of 4 M urea, 100 mM
ammonium bicarbonate, 2.5% N-propanol, and 10 mM
dithiothreitol on a Mixmate (Eppendorf) at 1200 rpm for 10
min. Reduction of disulfide bonds was performed at 37 °C for
30 min on a ThermoMixer (Thermo Fisher Scientific) set at
350 rpm. After cooling at room temperature for 5 min, 10 μL
of 250 mM iodoacetamide was added. Alkylation was allowed
to proceed for 30 min at room temperature in the dark. 69 μL
of digestion buffer (100 mM ammonium bicarbonate, 2 mM
CaCl2 pH 8.0) and 1 μg of trypsin were added to each well.
Trypsin activity was tested using a Nα-benzoyl-L-arginine ethyl
ester. The plate was sealed, mixed on a Mixmate at 350 rpm for
5 min, and spun down. The digestion reaction was allowed to
proceed for 20 h on a ThermoMixer set at 350 rpm and 37 °C,
after which the plate was cooled on ice for 5 min and spun
down. The reaction was then quenched by the addition of 3 μL
of 100% formic acid and 2.4 μg of glucagon as peptide carrier.
LC-MS/MS Analysis
Peptide samples were loaded into a 75 μm i.d. × 150 mm Self-
Pack C18 column with 5 μm particles installed in the Easy-
nLC 1200 system (Proxeon Biosystems). The buffers used for
chromatography were 0.2% formic acid (buffer A) and 90%
acetonitrile/0.2% formic acid (buffer B). Peptides were eluted

with a two-slope gradient at a flow rate of 250 nL/min. Solvent
B first increased from 1 to 40% over 100 min and then from 40
to 85% B over 10 min. The HPLC system was coupled to an
Orbitrap Fusion mass spectrometer (Thermo Scientific) via a
Nanospray Flex Ion Source. Nanospray and S-lens voltages
were set to 1.3−1.8 kV and 60 V, respectively. Capillary
temperature was set to 250 °C. Full scan MS survey spectra
(m/z 360−1560) in profile mode were acquired in the
Orbitrap with a resolution of 120,000 and a target value of 3 ×
105. The 25 most intense ions were fragmented in the HCD
collision cell and analyzed in the linear ion trap with a target
value of 2 × 104 and normalized collision energy at 28. Target
ions selected for fragmentation were dynamically excluded for
20 s.
Computational Identification of Proteins

The peak list files were generated with Proteome Discoverer
(version 2.1, Thermo Fisher Scientific) using the following
parameters: minimum mass set to 500 Da, maximum mass set
to 6000 Da, no grouping of MS/MS spectra, precursor charge
set to auto, and minimum number of fragment ions set to 5.
Protein identification was performed by searching the
UniProtKB/SwissProt human protein sequence database
(downloaded in July 2016)42 with Mascot 2.6 (Matrix
Science).31 The mass tolerances for precursor and fragment
ions were set to 10 ppm and 0.6 Da, respectively. Tryptic
peptides, allowing up to two missed cleavages, were searched
by the algorithm. Cysteine carbamidomethylation was specified
as a fixed modification and methionine oxidation as a variable
modification. Data interpretation was performed using Scaffold
(version 4.8),43 Mascot, and Qual Browser (Xcalibur, Thermo
Fischer Scientific), and protein identifications were reported at
an FDR of <1%.
IP-MS/MS Data Sets Details and Availability

The immunoprecipitation experiments were performed using
12 antibodies, targeting 10 proteins, and copurifying a total of
226 unique plasma proteins (protein identification FDR <
1%). Of these, five immunoprecipitation experiments were
performed using antibodies targeting proteins known to be
present in human plasma and, thus, containing putative
protein−protein interactions (CNDP1 (×2) (CNDP1_HU-
MAN), KLK6 (KLK6_HUMAN), SNCA (SYUA_HUMAN),
PCSK9 (PCSK9_HUMAN)). These proteins were selected
based on the availability of good quality antibodies and to
represent a mix of proteins that were fairly well characterized
and others for which the interactions in plasma were largely
unknown. Conversely, the remaining seven immunoprecipita-
tion experiments were performed using antibodies targeting
proteins not expected to be present in human plasma (FLAG,
HA, LC3B, METTL23, RPAP2). These tentative experimental
negative controls were initially assessed to determine if they
confidently produced useable examples of antibody nonspecific
binding. The resulting data were then used for the construction
of a machine-learning classifier. The MS/MS-based proteomics
data have been deposited to the ProteomeXchange Con-
sortium44 via the PRIDE45 partner repository with the data set
identifier PXD050230.
Identifying a Set of Experimental Negative Controls Using
Unsupervised Learning

MS/MS data sets were analyzed to evaluate whether a subset
of experimental negative controls captured a population of
antibody nonspecific binding partners. The rationale is that
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nonspecific bindings are more likely to occur with abundant
plasma proteins and that such bindings should be somewhat
similar for different antibodies. Conversely, an antibody that
uniquely purifies a set of nonspecific proteins would not be
useful to model contamination events that can occur in
empirical experiments. Controls showing a similar set of
purified proteins could, therefore, be used to build a model of
nonspecific binding. The protein spectral counts in each IP-
MS/MS experiment were normalized. Specifically, the spectral
count of a protein p, was normalized against the total spectral
count for all proteins purified in a given IP-MS/MS experiment
b.

=s
x

xb p
b p

b
,

,

where xb,p is the spectral count of p when purified in b, sb,p is its
normalized value and xb is the spectral count sum of all purified
proteins in i.
Bootstrapped hierarchical clustering was performed using

the complete linkage algorithm and Euclidean distance to
investigate the similarity between proteins purified by the
different antibodies, while assessing the robustness of the
resulting clusters. This analysis was implemented in R (version
3.6.1), using the pvclust package (version 2.2.0).46 Principal
component analysis (PCA) was used to further confirm this
clustering analysis. PCA was implemented in Python (version
3.7), using the Scikit-learn package (version 0.24.0).47

Discriminating Bona Fide PPIs from Antibody Nonspecific
Binding Using MAGPIE
We developed MAGPIE, a supervised learning algorithm,
which is trained to output the probability that a given putative
PPI is a true one given a subset of negative controls. Most
proteins were not detected in all negative controls; however,
the nonidentification of a protein by MS/MS does not equate
to its absence in the analyzed sample. For any protein
identified in at least one negative control or IP-MS/MS
experiment of known plasma proteins, spectral pseudocount
values were attributed to the same protein in negative controls
when it failed to be detected. This provided a conservative
assessment of the PPI reliability. Pseudocounts were assigned
by uniformly and randomly sampling a value from the bottom
10% of nonzero spectral count values belonging to the
respective negative control.
Training Set and Classifying Features. MAGPIE is

implemented as a logistic regression classifier for the binary
classification of the putative PPIs. The negative training set was
built from proteins detected in the negative controls. There
are, however, no clear-cut criteria for building a positive
training set. Nevertheless, Fredolini et al. showed that a Z-
score can represent a good selection criterion for true PPIs in
plasma.38 For each purified protein p in an IP-MS/MS
experiment targeting a plasma bait protein b, MAGPIE
therefore calculates a Z-score zb, p as follows:

=
s

Z scoreb p
b p p

p
,

,

where sb, p is the normalized spectral count of p, purified in IP-
MS/MS experiment b, μp is the mean normalized spectral
count of p across all controls, and σp is the standard deviation
of the normalized spectral count of p across all controls. Fold-
change, fcb, p, of a putative interacting protein, p, was calculated
as follows,

=fc
s

b p
b p

p
,

,

To train this classifier, the criterion of a Z-score greater than
or equal to 3 defined likely high-confidence protein−protein
interactions, which in turn were used as our positive training
examples. Since there were many more negative examples than
positive examples, a subset of negative examples was randomly
sampled to create a 1:1 class-balanced training set. Normalized
spectral count data were then mined to generate the classifying
features. These included the normalized spectral count of the
protein in the IP-MS/MS experiment, the average, standard
deviation, and maximum normalized spectral count of the
protein in the negative control experiments, and the
normalized spectral count fold-change. The features are listed
and further defined in Table 1.

Logistic Regression Classifier to Detect Bona Fide
PPIs. MAGPIE implements a logistic regression model for
classification, which was trained to output the probability that a
given putative protein−protein interaction constitutes a true
interaction. The logistic regression model was implemented
using the Scikit-learn package (version 0.24.0), and its
hyperparameters were optimized to minimize our model’s
false discovery rate as much as possible. The “multi_class”
hyperparameter was set to “multinomial”, such that the cross-
entropy loss function was used. The “penalty” hyperparameter
was set to “l2” to apply an L2 regularization penalty. Finally,
the “solver” hyperparameter was set to “newton-cg” to apply
the Newton conjugate gradient algorithm for optimization.
Evaluating MAGPIE’s Performance for Detecting

Bona Fide PPIs. Due to the lack of existing ground truth
knowledge about the PPIs purified in our human plasma study,
true positive PPIs cannot be easily estimated. However, false-
positive PPIs can be estimated from the set of proteins
detected in the control experiments. Such proteins would
obtain a probability from the logistic regression classifier that
would be higher than a specified confidence threshold. This
information allows for the estimation of an FDR at a given
probability threshold, t (i.e., FDR(t)). Similar to a leave-one-
out cross-validation procedure, MAGPIE implements a leave-
one-control-out (LOCO) strategy to estimate this FDR. This
strategy functions by executing MAGPIE k times, where k is
the number of negative control IP-MS/MS experiments. At
each iteration, classification features are re-engineered, by
omitting the spectral count data of the ith negative control,
where i = 1, ..., k. In other words, the spectral count average,

Table 1. Classifying Features for Training and Testing the
Machine Learning Model

feature feature description

spectral count spectral count normalized against the total spectral
count for all detections of a given experiment or
control.

average spectral count in
the controls

normalized average spectral count across all controls
for a given detected plasma protein.

standard deviation of
spectral count in the
controls

normalized sample standard deviation across all
controls for a given detected plasma protein.

spectral count maximum
in the controls

normalized spectral count maximum across all controls
for a given detected plasma protein.

spectral count fold-
change relative to the
controls

normalized fold-change relative to average spectral
count across all controls for a given detected plasma
protein.
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standard deviation, maximum, fold-change, and Z-scores were
recomputed for each LOCO iteration. The purified plasma
protein detections belonging to the omitted negative control,
of a given iteration, were used as the testing data set for
predicting the number of false-positive identifications, as such a
protein deemed true by MAGPIE represents nonspecific
binding. Hence, for every IP-MS/MS experiment bC from
the set of negative control experiments BC, MAGPIE’s logistic
regression computes the probability prob(pbC) for all proteins
pbC ∈ PbC, which is the set of proteins detected in the control
experiment bC. Similarly, MAGPIC computes prob(pbE) for all
proteins pbE ∈ PbE, the set of proteins detected in an experiment
targeting plasma proteins bE from the set of all experiments
targeting plasma proteins BE. In other words, FDRs are
estimated by computing the fraction of the number of plasma
proteins in the left-out controls in each LOCO iteration that
obtained a confidence score greater than or equal to the
threshold t (i.e., false-positive interactions) against the number
of plasma proteins in the actual experiments that obtained a
confidence score greater than or equal to t (i.e., true
interactions). This allows our method to estimate an FDR
for a given value of t as follows:

= | × |

| × |

tFDR( )

p t

B P

p t

B P

1 ( )

1 ( )

bC BC pb
C Pb

C prob bC

C
bC

bE BE pb
E Pb

E prob bE

E
bE

where 1a is an indicator function yielding 1 if a is true and 0
otherwise.
A monotonic transformation is applied to the estimated

FDRs when predicting the number of putative protein−protein
interactions at a given FDR, calculated as follows,

= +t min t t incFDR( ) (FDR( ), FDR( ))

where t is the probability threshold and t + inc is the following
confidence score threshold. This procedure eliminates the
variation that can be observed at very stringent values of t,
where the numerators and denominators become very small.
With the results of the LOCO runs, MAGPIE derived an
overall FDR at each probability threshold by taking the ratio of
the normalized summed count of predictions greater than or
equal to a given probability threshold across all LOCO runs.
Finally, because there are two instances of random sampling in
each run (spectral pseudocounts data imputation and training
set assembly), the robustness of MAGPIE’s performance was
evaluated by executing it 1000 times, without seed setting, to
ascertain more confidence in its results.

Figure 1. Workflow schematic. (A) The mass spectral count data sets of empirical and negative control IP-MS/MS experiments performed in
human plasma samples were analyzed by unsupervised machine learning algorithms (hierarchical clustering and principal component analysis) to
identify a set of high-quality negative controls. (B) Features for supervised machine learning were engineered and assigned to all training and testing
examples. A logistic regression classifier was constructed and trained to output the probability that a given putative protein−protein interaction was
true, from which an FDR is derived.
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Benchmarking MAGPIE against SAINT

MAGPIE was benchmarked against SAINT, a leading
algorithm for assessing the confidence of putative protein−
protein interactions. To prepare input data for SAINT,
UniProt Swiss-Prot and TrEMBL (both accessed May 20,
2020) were locally downloaded to retrieve protein sequence
lengths, which are necessary in SAINT’s input. To execute
SAINT, the saint-spc-ctrl program was executed with
recommended parameters nburn = 2000, niter = 10,000
(both Gibbs sampling parameters), lowMode = 1, minFold =
1, and normalize = 0. SAINT input spectral count data was
imputed using pseudocounts using the same method
MAGPIE’s input data was imputed. To perform a fair
comparison, SAINT was run while implementing the same

LOCO strategy as MAGPIE. In other words, SAINT was run 5
times, wherein 5 is the number of negative control IP-MS/MS
experiments. In each run, the spectral count data of a different
negative control was omitted and used for predicting false-
positive identifications. As SAINT also outputs the probability
that a given putative protein−protein interaction is a bona fide
interaction, the same FDR estimation and monotonic trans-
formation were applied, though using the SAINT probability as
the threshold, t, instead of the logistic regression probability.
The results of MAGPIE and SAINT could therefore be fairly
compared. This FDR value is different from the BFDR derived
from SAINT, which could not be used here to perform a fair
comparison.

Figure 2. Hierarchical clustering and principal component analysis of IP-MS/MS experiments and negative controls. (A) Complete linkage analysis
on the normalized spectral count data prior to excluding the Anti-SRB7-IgG Ab 1 and Anti-SRB7-IgG Ab 2 experiments. (B) Complete linkage
analysis on the normalized spectral count data after excluding the Anti-SRB7-IgG Ab 1 and Anti-SRB7-IgG Ab 2 experiments. (A, B) Both analyses
were implemented using Euclidean distance and with 10,000 bootstrapping iterations, whose values are denoted by the red numbers under to the
inner nodes of the dendrogram. Branch height represents the relative distance between the normalized spectral count profiles of the different
experiments. Designations of experiments are color-coded at the bottom of each leaf. (C) Principal component analysis on the normalized spectral
count data prior to excluding the Anti-SRB7-IgG Ab 1 and Anti-SRB7-IgG Ab 2 experiments. (D) Principal component analysis on the normalized
spectral count data after excluding the Anti-SRB7-IgG Ab 1 and Anti-SRB7-IgG Ab 2 experiments. (C, D) Variance in the data explained by the
given principal component is indicated in the axis labels.
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Known Protein−Protein Interactions Present within Our
Data Sets

Protein interactions detected by our IP-MS/MS experiments
were further validated against the STRING protein−protein
interaction repository (version 11.0)39 using the UniProt IDs
of interacting proteins. STRING interactions considered were
known and predicted protein−protein interactions with a
STRING-derived medium confidence interaction score (score
≥ 0.4), which correspond to STRING’s default query setting.
Subnetworks of the known and predicted protein−protein
interactions detected in our IP-MS/MS experiments were
created using Cytoscape (version 3.8.0)48 and annotated to
denote if MAGPIE classified these interactions with high
confidence. MAGPIE’s high-confidence PPIs were also
compared to those stored in the BioGRID (version 4.4.235)
PPI database.49

AlphaFold 3 PPI Predictions

AlphaFold 3′s web server40 was used to predict PPIs between
the proteins involved in the high confidence PPIs detected by
MAGPIE. Sequences for each protein were downloaded from
UniProtKB/SwissProt in August 2024. AlphaFold 3 was
executed with the seed set to auto. A predicted template
modeling (pTM) score ≥0.5 was used to indicate a valid PPI
prediction.
Software Availability

MAGPIE is implemented as an open-source platform-
independent Python (version 3.7) software package and is
ava i lab le for download at : ht tps ://gi thub.com/
LavalleeAdamLab/MAGPIE. The full outputs of both
MAGPIE’s and SAINT’s analyses presented in this study are

Figure 3. MAGPIE classifying performance evaluation and the 68 PPIs it deemed high confidence. (A) FDRs estimated at logistic regression
probability thresholds for each of the five leave-one-control-out cross-validation runs corresponding to a given negative control experiment. An
overall FDR, derived from the results of the five leave-one-control-out runs, is superimposed. (B) Heatmap of the log10-transformed spectral count
data belonging to the 68 high-confidence PPIs across all IP-MS/MS experiments and negative controls. Comparison of spectral count abundance
for high-confidence PPIs, classified by MAGPIE (logistic regression probability ≥ 0.99, FDR = 20.77%). Gray cells represent successfully purified
proteins that were identified by MS/MS, but that are not deemed high-confidence interactors in the IP-MS/MS experiments. Red colored cells
were confidently detected by MAGPIE, while red cells with a dark gray outline represent common PPIs detected by both MAGPIE and SAINT.
Dendrograms were generated using complete linkage and the Euclidean distance (C) Evaluating the robustness of MAGPIE. FDRs estimated for
1,000 randomized runs of MAGPIE as a function of the logistic regression probability thresholds, assessing the effects of the spectral pseudocount
stochastic data imputation and random selection of negative training examples.
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provided in the Supporting Information, Files S1 and S2,
respectively.

■ RESULTS

Overview of the Approach

A series of IP-MS/MS experiments using antibodies targeting
proteins known to be present in human plasma were
performed. Conversely, a series of IP-MS/MS experiments
using antibodies targeting proteins not expected to be present
in human plasma was performed to generate a negative control
data set. Hierarchical clustering and principal component
analysis (PCA) were used to identify a set of representative
negative control experiments. This was followed by the
construction of MAGPIE (Machine learning Assessment with
loGistic regression of Protein−protein IntEractions), a
supervised learning-based algorithm for assessing the con-
fidence of putative PPIs in human plasma. Our experimental
workflow is graphically depicted in Figure 1. MAGPIE was
then benchmarked against a leading algorithm for assessing
PPI confidence, SAINT. MAGPIE’s high-confidence identi-
fications were further validated using external repositories of
PPIs.
Unsupervised Learning Reveals a Set of Experimental
Negative Controls with Similar Nonspecific Bindings

The bootstrapped hierarchical clustering analysis, performed
on the normalized spectral count data, revealed that experi-
ments targeting known plasma proteins mostly cluster
separately from the negative controls (Figure 2A,B). Two
negative controls (antibody IDs: Anti-SRB7-IgG Ab 1, Anti-
SRB7-IgG Ab 2) had noticeably higher spectral count
abundance than all other negative controls (data not shown).
Figure 2A shows these antibodies clustering with two other
negative controls (antibody IDs: Anti-HA-IgG, Anti-RPAP2-
IgG). Figure 2B, excluding the two outlier Anti-SRB7-IgG
experiments, shows one cluster composed almost exclusively of
negative controls and a second cluster of exclusively
encompassing experiments of plasma proteins. Furthermore,
the bootstrapping results are relatively higher in the two
dominating clusters of Figure 2B versus those of Figure 2A,
indicating more robust clusters in Figure 2B. PCA was run on
the same normalized spectral count data set (Figure 2C,D) and
also showed that the two Anti-SRB7-IgG experiments would
likely be unreliable for modeling background noise in the MS/
MS data, given the uniqueness of their profiles (Figure 2C).
This analysis revealed the same clustering of negative controls
separated from most of the experiments targeting plasma
proteins upon removal of both Anti-SRB7-IgG experiments
(Figure 2D).
These analyses revealed five negative control experiments,

involving the antibodies targeting Flag, HA, LC3B, METTL23,
and RPAP2 (antibody IDs: Anti-Flag-IgG, Anti-HA-IgG, Anti-
LC3B-IgG, Anti-METTL23-IgG, and Anti-RPAP2-IgG, re-
spectively), that showed purification profiles different from
those of the five antibodies that purified target plasma proteins:
CNDP1 (×2), KLK6, SNCA, and PCSK9 (antibody IDs: Anti-
CNDP1-IgG Ab 1, Anti-CNDP1-IgG Ab 2, Anti-KLK6-IgG,
Anti-SNCA-IgG, and Anti-PCSK9-IgG, respectively). These
experiments suggest that specific protein−protein interactions,
differing from the background, are captured by these
antibodies. Table S2 also shows that these antibodies are
able to effectively purify their targets in plasma. The mass

spectrometry data from these experiments were therefore used
for all further analyses.
MAGPIE Identifies Plasma PPIs while Controlling for the
False Discovery Rate

In constructing the training data sets, the positive training data
set was composed of putative protein−protein interactions
whose Z-scores were greater than or equal to three, totaling
226 positive training examples. To ensure a class-balanced
training data set, 226 purifications in the negative control
experiments were randomly sampled to yield the negative
training examples. The proportion of negative training
examples belonging to each negative control was plotted in
Figure S1, showing that the resulting 226 negative training
examples roughly represent all five negative control experi-
ments equally. With the completed training data sets,
MAGPIE’s logistic regression model was trained, and its
performance was evaluated through the implementation of our
leave-one-control out (LOCO) cross-validation methodology
(see Experimental Methods). Because MAGPIE implements a
logistic regression model, the weight associated with each
feature could be easily extracted. The normalized spectral
count fold-change was attributed the most weight in the model
(Table S3). False discovery rates were computed at given
logistic regression probability thresholds for the false-positive
identifications in each of the negative control experiments
(Figure 3A). An overall false discovery rate was then derived,
demonstrating that MAGPIE achieves a false discovery rate of
20.77% at the 0.99 logistic regression probability threshold
(Figure S2). At this false discovery rate, MAGPIE identifies 68
high-confidence protein−protein interactions out of 882
putative protein−protein interactions tested (Table S4).
Annotated spectra for the 68 interactions detected with a
spectral count ≤50 are provided in the Supporting
Information, File S3. Of importance, all five plasma proteins
targeted by our five antibodies were identified with high
confidence in their respective experiments, representing strong
positive controls. Figure 3B presents a heatmap of the log10-
transformed spectral counts belonging to these high-
confidence interactions. This visualization reveals that
MAGPIE identifies putative protein−protein interactions that
range from low to high spectral count abundance.
MAGPIE’s Predictions Are Robust to Differences in
Training Sets

Given the stochasticity associated with MAGPIE’s training, the
addition of pseudocount values in the negative control
experiments, and the random sampling of negative training
examples from controls, we evaluated the robustness of
MAGPIE’s predictions. Figure 3C shows the resulting false
discovery rates after MAGPIE was run 1000 times. Figure S3
shows the coefficient of variation of the FDR for these runs.
Little variation is observed in the false discovery rates at any
probability threshold, and a standard deviation of 0.01 was
observed at a probability threshold of 0.99, indicating that
MAGPIE’s reported performances are minimally influenced by
the randomly added pseudocount values or randomly sampled
negative training examples. We investigated the minimum
training set size necessary to maintain MAGPIE’s perform-
ances. Figure S4 shows that four negative controls achieve
prediction performances similar to those of five negative
controls in terms of FDR control. However, training with three
negative controls sees a large increase of FDR values, showing
that MAGPIE’s modeling is not as accurate and that four
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negative controls appear to be the minimum needed to achieve
reliable predictions.
MAGPIE Outperforms SAINT when Detecting Plasma PPIs

When comparing their identifications, MAGPIE outperforms
SAINT in terms of both the number of interactions identified
and their reliability. When applying our LOCO cross-
validation methods, SAINT identified 18 high-confidence
interactions at a probability threshold of 0.99 (the most
stringent threshold), corresponding to a false discovery rate of
41.5% (Figure 4). At its 0.99 logistic regression probability
threshold, MAGPIE identified more high-confidence inter-
actions (Figure 4A), including the 18 identifications made by
SAINT (Figure 4B). Additionally, SAINT fails to identify
SNCA, targeted by the Anti-SNCA-IgG antibody (i.e., positive
control), as one of its high-confidence interactions. We also
show the level of overlap as a function of the output
probabilities of both SAINT and MAGPIE (Figure S2).
From this figure, we notice that the overlap gradually increases
as probability increases. It is worth mentioning that, while
SAINT is a leading algorithm for protein−protein interaction
assessment, it was never designed to deal with human plasma
samples or to be used with the type of negative controls
employed in this investigation. This further emphasizes the
need for a tailored approach to study and characterize plasma.
MAGPIE’s PPI Identifications Are Corroborated by
Interactions in PPI Repositories

Since there does not exist any experimentally validated large-
scale protein−protein interaction data sets for the proteins
targeted directly by the purifying antibodies used in our
empirical IP-MS/MS experiments, an indirect method was
used to validate MAGPIE’s results. Of the five targeted
proteins, two had interactions in human cell lines that were
documented (known or predicted) in the STRING repository
(PCSK9 and SNCA) (Figure 5).
Twenty-five of these known or predicted protein interactors

of PCSK9 were found to be identified by mass spectrometry in
our data set (Figure 5A). Of these, MAGPIE classified one,
ceruloplasmin (CP), with a probability of 0.993, corresponding

to an FDR of 20.77%. Five more known or predicted PCSK9
interactors were identified at a high probability, greater than or
equal to 0.95, but less than 0.99 (ALB, SERPINC1, APOA2,
SERPIND1, and IGFBP3), corresponding to a false discovery
rate of 23.14%. Composing the second subnetwork, two
known or predicted protein interactors of the SNCA protein
were found to be present in our data set (Figure 5B). One of
these was identified as a high-confidence interactor, the serum
amyloid P-component (APCS). The second STRING
interactor of SNCA was not detected, kallikrein-6 (KLK6).
However, the KLK6 protein was another one of the targets by
a purifying antibody, Anti-KLK6-IgG, within our data set.
Notably, MAGPIE classified the putative protein−protein
interaction between KLK6 and APCS with high confidence.
While STRING does not directly validate this interaction, the
fact that two interactors of SNCA are interacting in our data
set provides evidence that this previously unreported
interaction may take place in human plasma. Another of
MAGPIE’s high-confidence interactions was corroborated by
the BioGRID PPI repository. The interaction between SNCA
and A1BG was previously reported by yeast-two-hybrid.50

While this overlap with BioGRID may seem low at first glance,
it is worth noting that the overwhelming majority of
BioGRID’s PPIs are derived from cell lines. This biological
context is very different from that of plasma, where the PPIs
detected by MAGPIE are taking place. Finally, Fredolini et al.
reported an enrichment of ITIH1, when an antibody targeted
CNDP1, that achieved a Z-score of 2.54, which was just south
of their threshold of 3.38 While this interaction is not formally
reported in their paper, it was detected to be of high
confidence in our analysis.
MAGPIE’s PPI Identifications Are Corroborated by
AlphaFold 3′s PPI Predictions
Since the literature on PPIs taking place in human plasma is
limited, we used AlphaFold 3′s PPI predictions51 to further
validate the high-confidence PPIs detected by MAGPIE. 52
out of the 68 high-confidence PPIs from MAGPIE (76.5%)
were confidently predicted by AlphaFold 3 (pTM score ≥ 0.5;
Table S4). This fraction is in line with the FDR of 20.77%

Figure 4. Benchmarking of MAGPIE against SAINT. (A) Comparing the number of predicted true interactions at estimated FDRs. (B) Venn
diagram of high-confidence interactions (MAGPIE: logistic regression classifier probability ≥ 0.99, FDR = 20.77%; SAINT: probability ≥ 0.99,
FDR = 41.53%) as predicted by each model.
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achieved by these 68 PPIs. As for MAGPIE PPIs not validated
by AlphaFold 3, it is worth noting that AlphaFold 3 predicts
only direct PPIs. However, our approach may detect PPIs that
are indirect. The interactions could need cofactors to occur;
however, this scenario is not easily modeled using AlphaFold 3,
given the large number of protein combinations possible.
Interestingly, the ratio of PPIs validated by AlphaFold 3 was
greater for the 50 PPIs solely detected by MAGPIE (82%)
than for the 18 PPIs detected by both SAINT and MAGPIE
(61%). This hints at the fact that the rate of true positives

among PPIs solely predicted by MAGPIE is likely to be as high

if not higher than those also detected by SAINT. Similarly,

Figure 5C shows that the distribution of the confidence scores

of the AlphaFold 3 predictions between these two sets of PPIs

is very similar, again highlighting that PPIs solely detected by

MAGPIE are likely as correct as those also detected by SAINT.

Figure 5. Protein−protein interaction subnetworks as identified by STRING. (A) Comparing the 25 known or predicted protein−protein
interactions involving PCSK9, as identified by STRING, to the classification results outputted by MAGPIE. (B) Comparing the two known or
predicted protein−protein interactions involving SNCA, as identified by STRING, to the classification results outputted by MAGPIE (B). (A, B)
Interaction confidence level is color-coded. (C) Distribution of AlphaFold 3 pTM prediction confidence scores for the high confidence PPIs solely
detected by MAGPIE (red) and by both MAGPIE and SAINT (blue).
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■ DISCUSSION

Negative Control Selection
Our proof-of-concept study highlighted that different antibod-
ies targeting different proteins not expected to be in human
plasma can indeed purify a similar set of proteins, constituting
a model for background contamination and nonspecific
binding. It also demonstrated that while these purification
profiles are similar to each other, they differ enough from those
of antibodies targeting known plasma proteins. This suggests
that such antibodies tend to purify proteins that could be
considered “sticky” (i.e., likely to be purified by many
antibodies) or very abundant. This behavior enabled the
creation of our MAGPIE algorithm and the confidence
assessment of many novel human plasma PPIs. However, we
acknowledge that our proof-of-concept remains at a small
scale; thus, it is very likely that the antibodies we selected do
not comprehensively cover all nonspecific plasma protein
binding. This fact is probably one of the reasons why false
positives were detected in our data sets, as spurious nonspecific
binding events may not all be well modeled.
To improve results moving forward, performing a

comprehensive survey of antibodies targeting proteins not
expected to be present in human plasma may enable a more
complete representation of nonspecific binding in plasma. Such
modeling would likely more efficiently capture spurious
contamination events.
Limitations of the Supervised Machine Learning Model
The training and testing data sets that could be produced from
our data set facilitated the construction of a supervised
machine learning model with moderately good performance
(FDR of 20.77%). However, the negative control experiments
targeted both proteins that are known to exist in other
compartments in humans, such as the intracellular RNA
polymerase II-associated protein 2 (antibody ID: Anti-RPAP2-
IgG), and proteins that do not exist in humans, such as the
synthetic molecular FLAG tag (antibody ID: Anti-Flag-IgG).
While, in theory, the negative control antibodies were not
targeting known human plasma proteins, there is a chance that
they had some degree of affinity for plasma proteins. Indeed,
proteins may share domains with the intended target of the
antibody. We recognize that protein isoforms may also enter
circulation. For instance, the protein−protein interaction
network for RPAP2 has been extensively characterized in
human cell lines.52,53 Hemagglutinin (HA) is the most
abundant surface glycoprotein of the influenza A virus54 and
the human host response to both the viral infection and its
vaccination have been extensively characterized.55 Should there
be any affinity between the negative control antibodies and
circulating plasma proteins, then the resulting protein
purifications may not make the best possible examples of
contamination and antibody nonspecific binding. Ideally, the
proteins purified in the negative controls would solely
constitute the background noise in the spectral count data
for computational modeling, but this remains difficult to assess
without some degree of uncertainty.
In its current state, MAGPIE’s model requires at least 3

negative controls to be executed. In the proof-of-concept
presented here, we showed that negative controls originating
from different antibodies can capture the level of protein
nonspecific binding in plasma. While our approach does not
use standard replicates, these control act as such, with the
advantage that negative controls using different antibodies

capture a wider range of proteins than controls performed with
the same antibody. They also likely make the standard
deviation of the background protein spectral counts larger,
which provides greater specificity of our approach by making it
more challenging for a protein to be classified as a high
confidence interaction. In the future, our model could,
however, be modified to integrate standard replicate negative
controls. Similarly, features could be added and modified in the
logistic regression model to account for replicates of
experiments using antibodies targeting plasma proteins. For
instance, the model could incorporate a D-score, as used in the
CompPASS PPI confidence assessment software to capture
reproducibility.26

MAGPIE’s machine learning approach focuses on max-
imizing the number of protein−protein interactions detected
while minimizing the FDR. Minimizing FDR, although a
conservative approach, may come at the expense of generating
results with more false negatives. PPIs such as the one
involving KLK6 and A1AT, which are known to interact in
some biological fluids,40 have been missed by our approach
and may represent such a false negative. Given that the fold-
change of A1AT with respect to its presence in negative
controls is low (1.155), it is also possible that the antibody
used to target KLK6 interfered with this potential interaction.
Indirect Validation of High-Confidence Interactions Using
STRING
Because there do not exist experimentally validated data sets
for protein−protein interactions in human plasma for the four
proteins in our data set, external public repositories were
leveraged to indirectly validate the high-confidence interactions
identified by MAGPIE. The STRING protein−protein
interaction database has been used in the past for validating
interactions identified by predicting interactions from
sequences and structures.56 While this approach was not an
absolute method for validation, it provided insights into the
confidence and potential relevancy of MAGPIE’s identifica-
tions. It is worth noting that, because methodologies to map
protein−protein interactions in plasma are still in their infancy,
it is expected that very few of the interactions reported by
MAGPIE would have been previously deposited in STRING.
The small overlap between MAGPIE’s results and STRING is
therefore expected, as most of the interactions in the repository
are based on experiments in cell lines.

■ CONCLUSIONS
In this paper, we present MAGPIE, a novel machine learning-
based tool for assessing the confidence of putative protein−
protein interactions in human plasma. The methodologies
developed and MAGPIE are the first of their kind in the
pursuit of characterizing the human plasma interactome and
providing a better understanding of the biological processes
taking place in it.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00160.

(Figure S1) Proportion of negative examples randomly
sampled from each negative control experiment for
supervised machine learning training; (Figure S2)
number of PPIs detected by SAINT and MAGPIE and
their overlap as a function of their respective probability
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thresholds; (Figure S3) coefficient of variation of the
false discovery rates of MAGPIE as a function of its
probability threshold for 1000 executions; (Figure S4)
false discovery rates derived by MAGPIE as a function of
its probability threshold using all possible combinations
of 3 negative controls and 4 negative controls (PDF)

(Table S1) Antibody information and sources; (Table
S2) normalized spectral counts of plasma proteins
targeted by antibodies for all antibodies; (Table S3)
logistic regression model weights computed for all five of
MAGPIE’s features; (Table S4) all candidate PPIs
assessed by MAGPIE along with their classifying
features, probabilities, FDR values, SAINT probabilities
and FDR values, and results from BioGRID search and
AlphaFold 3 predictions (XLSX)

(File S1) MAGPIE output files in a compressed folder;
(File S2) SAINT output file; (File S3) annotated spectra
for high-confidence protein−protein interactions in a
compressed folder (ZIP)
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S. W. T.; Rajendran, D.; Wong, C. J.; Antonicka, H.; Pelletier, L.;
Palazzo, A. F.; Shoubridge, E. A.; Raught, B.; Gingras, A. C. A
proximity-dependent biotinylation map of a human cell. Nature. 2021,
595 (7865), 120−124.
(7) Hein, M. Y.; Hubner, N. C.; Poser, I.; Cox, J.; Nagaraj, N.;
Toyoda, Y.; Gak, I. A.; Weisswange, I.; Mansfeld, J.; Buchholz, F.;
Hyman, A. A.; Mann, M. A Human Interactome in Three
Quantitative Dimensions Organized by Stoichiometries and Abun-
dances. Cell. 2015, 163 (3), 712−723.
(8) Minton, K. Strength in numbers. Nat. Rev. Mol. Cell Biol. 2015,
16 (12), 702−703.
(9) Huttlin, E. L.; Ting, L.; Bruckner, R. J.; Gebreab, F.; Gygi, M. P.;
Szpyt, J.; Tam, S.; Zarraga, G.; Colby, G.; Baltier, K.; Dong, R.;
Guarani, V.; Vaites, L. P.; Ordureau, A.; Rad, R.; Erickson, B. K.;
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